Определение спектральной плотности мощности. Спектральная плотность мощности


Лекция 7.

СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ МОЩНОСТИ СЛУЧАЙНОГО ПРОЦЕССА

Подразумевая под случайным процессом множество (ансамбль) реализаций, необходимо иметь в виду, что реализациям, обладающим различной формой, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности по всем реализациям приводит к нулевому спектру процесса (при среднем = 0) из-за случайности и независимости фаз спектральных составляющих в различных реализациях. Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной величины, поскольку величина среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией x(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω . Введенную таким образом спектральную плотность S (ω) в дальнейшем будем называть энергетическим спектром функции x (t ) . Смысл такого названия определяется размерностью функции S (ω) , являющейся отношением мощности к полосе частот:

[S (ω) ] = [ мощность/ полоса частот ] = [мощность×время] = [энергия],

Энергетический спектр можно найти, если известен механизм образования случайного процесса. Здесь же мы ограничимся некоторыми определениями общего характера.

Методы вычисления СПМ

Функции спектральной плотности можно определять тремя различными эквивалентными способами, которые мы рассмотрим ниже:

С помощью ковариационных функций;

С помощью финитного преобразования Фурье;

С помощью фильтрации, возведения в квадрат и усреднения.

Определение спектров с помощью корреляционных функций.

Исторически первый способ определения спектральной плотности появился в математике. Он состоит во взятии преобразования Фурье от предварительно вычисленной корреляционной функции. После вычитания средних значений такие (бесконечные) преобразования Фурье обычно существуют, даже если (бесконечное) преобразование Фурье исходного процесса не существует. Этот подход дает двустороннюю спектральную плотность, определенную для частот f от - до + и обозначаемую S (f ) .

Пусть существуют корреляционные и взаимная корреляционная функции R x (t ), R y (t ) и R xy (t ) . Предположим также, что конечны интегралы от их абсолютных величин

R ( d

На практике эти условия всегда выполняются для реализаций конечной длины. Тогда ПФ функций R (t ) существуют и определяются формулами

S x (f)=

S y (f)=(1)

S xy (f)=

Такие интегралы по конечным реализациям существуют всегда. Функции S x (f ) и S y (f ) называют функциями спектральной плотности процессов x (t ) и y (t ) соответственно или просто спектральными плотностями, а функцию называют взаимной спектральной плотностью двух процессов x (t ) и y (t ) .

Обратные ПФ от формул (1) дают

R x (τ ) =

R y (τ ) = (2)

R xy (τ ) = df .

Соотношения (1) и (2) называют формулами Винера-Хинчина, которые в 30-е годы независимо установили связь между корреляционными функциями и спектральной плотностью через ПФ. При решении практических задач приходится допускать в R (t ) и S (f ) наличие дельта-функций.

Из свойств симметрии стационарных ковариационных функций следует

S x (-f) = S x (f) a S xy (-f) = S yx (f)


Следовательно, спектральная плотность S x (f ) – действительная четная функция, a S xy (f ) – комплексная функция от f .

Тогда спектральные соотношения из (1) можно преобразовать к виду

Оценка спектральной плотности мощности представляет известную проблему для случайных процессов. Примерами случайных процессов может служить шум, а также сигналы, несущие информацию. Обычно требуется найти статистически устойчивую оценку. Анализ сигналов подробно рассматривается в курсе «Цифровая обработка сигналов» . Начальные сведения изложены в .

Для сигналов с известными статистическими характеристиками спектральный состав может быть определен по конечному интервалу этого сигнала. При неизвестности статистических характеристик сигнала по отрезку сигнала можно получить только оценку его спектра. Разные методы использую различные допущения, и поэтому дают различные оценки.

При выборе оценки исходят из того, что в общем случае анализируемый сигнал представляет собой случайный процесс. И требуется выбрать несмещенную оценку, обладающую малой дисперсией, позволяющую усреднить спектр сигнала. Смещением называют разницу между средним значением оценки и истинным значением величины. Несмещенной оценкой называют оценку с нулевым смещением. Оценка с малой дисперсией хорошо локализует искомые величины, т.е. плотность вероятности сконцентрирована около среднего значения. Желательно иметь состоятельную оценку, т.е. оценку, которая при увеличении размера выборки стремится к истинному значению (смещение и дисперсия стремятся к нулю). Различают оценки параметрические, использующие только информацию о самом сигнале и непараметрические, использующие статистическую модель случайного сигнала, и осуществляющие подбор параметров этой модели.

При оценках случайных процессов распространено использование корреляционных функций.

Для эргодичного процесса возможно определение статистических параметров процесса путем усреднения по одной реализации.

Для стационарного случайного процесса корреляционная функция R x (t) зависит от интервала времени, для которого она определяется. Эта величина характеризует связь между значениями x(t), разделенными промежутком t. Чем медленнее убывает R(t), тем больше промежуток, в течение которого наблюдается статистическая связь между значениями случайного процесса.

где - математическое ожидание x(t).

Соотношение между корреляционной функцией R(t) и спектральной плотностью мощности W(w) для случайного процесса определяется теоремой Винера-Хинчина

Для дискретных процессов теорема Винера-Хинчина устанавливает связь между спектром дискретного случайного процесса W(w) и его корреляционной функции R x (n)

W(w)= R x (n)·exp(-j·w·n·T)

Для оценки энергии сигнала во временной и частотной областях используется равенство Парсеваля



Одним из распространенных способов получения оценки спектральной плотности является применение метода периодограмм.

Периодограмма (Periodogram) .В этом методе производится дискретное преобразование Фурье для сигнала x(n), заданного в дискретных точках выборки длиной N отсчетов и его статистическое усреднение. Фактическое вычисление спектра X(k), выполняется только в конечном количестве частотных точек N. Применяется быстрое преобразование Фурье (FFT). Вычисляется спектральная плотность мощности, приходящаяся на один отсчет выборки:

P xx (X k)=|X(k)| 2 /N, X(k)= , k=0,1,…,N-1.

Для получения статистически устойчивой оценки, имеющиеся данные разбивают на перекрывающиеся выборки, с последующим усреднением спектров, полученных по каждой выборке. Задается число отсчетов на выборку N и сдвиг начала каждой последующей выборки относительно начала предыдущей N t . Чем меньше число отсчетов в выборке, тем больше выборок и меньшая дисперсия у оценок. Но поскольку длина выборки N связана с частотным разрешением (2.4), то уменьшение длины выборки ведет к уменьшению частотного разрешения.

Таким образом, сигнал просматривается через окно, а данные, не попадающие в окно, принимаются равными нулю. Конечный сигнал x(n) состоящий из N отсчетов, обычно представляют как результат умножения бесконечного по времени сигнала (n) на прямоугольное окно с конечной длиной w R (n):

x(n) = (n) ∙w R (n),

а непрерывный спектр X N (f) наблюдаемых сигналов x(n) определится как свертка Фурье-образов X(f), W R (f) бесконечного по времени сигнала (n) ∙и окна w R (n)



X N (f)=X(f)*W R (f)=

Спектр непрерывного прямоугольного окна (rect) имеет форму интегрального синуса sinc(x)=sin(x)/x. Он содержит главный «лепесток» и несколько боковых, из которых самый большой приблизительно на 13 dB ниже основного пика (см. рис.15).

Фурье-образ (спектр) дискретной последовательности, получаемой N-точечной дискретизацией непрерывного прямоугольного окна, показан на рис.32. Он может быть вычислен суммированием смещенных интегральных синусов (2.9), в результате получается ядро Дирихле

Рис. 32. Спектр дискретного прямоугольного окна

В то время как сигнал с бесконечной длиной сконцентрирует его мощность точно в дискретной частоте f k , прямоугольная выборка сигнала имеет распределенный спектр мощности. Чем короче выборка, тем более распределенный спектр.

При спектральном анализе производится взвешивание данных с помощью оконных функций, чем добиваются уменьшения влияния боковых «лепестков» на спектральные оценки.

Чтобы обнаружить две гармоники f 1 и f 2 с близкими частотами, необходимо, чтобы для временного окна T ширина главного «лепестка» Df -3 ≈ Df L =0 =1/Т, определяемая на значении -3дБ, была меньше разности искомых частот

Df=f 1 -f 2 > Df -3

Ширина временного окна Т связана с частотой дискретизацией f s и числом отсчетов выборки формулой (2.4).

Инструментальные средства гармонического анализа . Для исследования сигналов очень удобно применение пакета MATLAB, в частности, его приложения (Toolbox) Signal Processing.

Модифицированные периодограммы используют непрямоугольные оконные функции, уменьшающие эффект Гиббса. Примером может служить использование окна Хэмминга (Hamming). Но при этом одновременно происходит примерно вдвое увеличение ширины главного лепестка спектрограммы. Несколько более оптимизировано окно Кайзера (Kaiser). Увеличение ширины главных лепестков при создании фильтров нижних частот ведет к увеличению переходной полосы (между полосами пропускания и задержания).

Оценочная функция Уэлча (Welch) . Метод состоит из деления последовательных данных времени в сегменты (возможно с перекрытием), далее обрабатывается каждый сегмент, а затем оценивают спектр путем усреднения результатов обработки сегментов. Для улучшения оценки могут использоваться непрямоугольные оконные функции, например окно Хэмминга. Увеличение числа сегментов уменьшает дисперсию, но при этом уменьшается разрешение метода по частоте. Метод дает неплохие результаты при малом превышении полезного сигнала над шумом и достаточно часто используется на практике.

На рис.33 приведены оценки гармонического состава для данных, содержащих узкополосые полезные сигналы и белый шум, при различных выборках (N=100, N=67), и использовании различных методов.

Рис. 33. Оценка гармоник сигнала для 1024 точечного FFT-преобразования

Параметрические методы используют авторегрессионные модели (AR). В методах строятся модели фильтров и с их помощью оценивают спектры сигналов. Все методы при наличии шума в сигнале дают смещенные оценки. Предназначены методы для обработки сигналов имеющих гармонические составляющие на фоне шума. Порядок метода (фильтра) задается в два раза больше, чем число гармоник, присутствующих в сигнале. Предложено несколько параметрических методов .

Метод Берга (Burg) дает высокую разрешающую способность по частоте для коротких выборок. При большом порядке фильтра спектральные пики расщепляются. Положение спектральных пиков зависит от начальных фаз гармонических.

Ковариационный (covariance) метод позволяет оценить спектр сигнала, содержащего сумму гармонических компонентов.

Метод Юла-Уоркера (Yule-Walker) дает хорошие результаты на длинных выборках и не рекомендуется для коротких выборок.

Корреляционные методы . Методы MISIC (Multiple Signal Classification) и EV (eigenvectors) выдают результаты в форме псевдоспектра. В основе методов лежит анализ векторов корреляционной матрицы сигнала. Эти методы дают несколько лучшее разрешение по частоте, чем автокорреляционные методы.

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде (t ). Тогда для него можно записать ряд Фурье

Для того, чтобы перейти к функции s (t ) следует в выражении (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине:

амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя,т.к.спектр становится сплошным.

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают т.е.

Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности

определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

Энергетический спектр сигнала. Если функция s(t) имеет фурье-плотность мощности сигнала (спектральная плотность энергии сигнала ) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S()|2 = S()S*() = W(). (5.2.9)

Спектр мощности W()-вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге t 0, мнимая часть спектра Wuv () стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение. Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

Энергетический спектр сигнала – это распределение энергии базисных сигналов, которые составляют негармонический сигнал, на оси частот. Математически энергетический спектр сигнала равен квадрату модуля спектральной функции:

Соответственно амплитудно-частотный спектр показывает множество амплитуд составляющих базисных сигналов на частотной оси, а фазо-частотный – множество фаз

Модуль спектральной функции часто называют амплитудным спектром , а ее аргумент – фазовым спектром .

Кроме того, существует и обратное преобразование Фурье, позволяющее восстановить исходный сигнал, зная его спектральную функцию:

Например, возьмем прямогульный импульс:

Еще один пример спектров:

Частота Найквиста, теорема Котельникова .

Частота Найквиста - в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если спектр (спектральная плотность)(наивысшая частота полезного сигнала) сигнала равен или ниже частоты Найквиста. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот), и форма восстановленного сигнала будет искажена. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть (теоретически) продискретизирован и затем восстановлен без искажений. Фактически «оцифровка» сигнала (превращение аналогового сигнала в цифровой) сопряжена с квантованием отсчѐтов - каждый отсчѐт записывается в виде цифрового кода конечной разрядности, в результате чего к отсчетам добавляются ошибки квантования (округления), при определенных условиях рассматриваемые как «шум квантования».

Реальные сигналы конечной длительности всегда имеют бесконечно широкий спектр, более или менее быстро убывающий с ростом частоты. Поэтому дискретизация сигналов всегда приводит к потерям информации (искажению формы сигнала при дискретизации-восстановлении), как бы ни была высока частота дискретизации. При выбранной частоте дискретизации искажение можно уменьшить, если обеспечить подавление спектральных составляющих аналогового сигнала (до дискретизации), лежащих выше частоты Найквиста, для чего требуется фильтр очень высокого порядка, чтобы избежать наложения «хвостов». Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а гладкую форму, и образуется некоторая переходная полоса частот между полосой пропускания и полосой подавления. Поэтому частоту дискретизации выбирают с запасом, к примеру, в аудио компакт-дисках используется частота дискретизации 44100 Герц, в то время как высшей частотой в спектре звуковых сигналов считается частота 20000 Гц. Запас по частоте Найквиста в 44100 / 2 - 20000 = 2050 Гц позволяет избежать подмены частот при использовании реализуемого фильтра невысокого порядка.

Теорема Котельникова

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации Интуитивно нетрудно понять следующую идею. Если аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изменяющейся кривой, без резких изменений амплитуды), то вряд ли на некотором небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшением интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискретизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала. Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.

Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

где k - номер отсчета; - значение сигнала в точках отсчета - верхняя частота спектра сигнала.

Частотное представление дискретных сигналов .

Большинство сигналов можно представить в виде ряда Фурье:

Пусть дан некоторый сигнал , который характеризует изменение напряжения или силы тока во времени. Тогда будет определять мгновенную мощность, выделяемую на сопротивлении 1 Ом.

Проинтегрируем мгновенную мощность на некотором интервале времени и получим энергию сигнала на данном интервале:

Тогда средняя мощность сигнала на данном интервале времени равна:

Если сигнал является периодическим, то среднюю мощность можно получить путем усреднения на одном периоде повторения сигнала. В случае абсолютно-интегрируемого непериодического сигнала , интервал интегрирования может быть расширен на всю ось времени:

Можно заметить, что средняя мощность абсолютно-интегрируемого непериодического сигнала равна нулю при усреднении на бесконечном интервале времени. Аналогично, энергия периодического сигнала на всей оси времени равна бесконечности.

Таким образом, периодические сигналы, повторяющиеся на все оси времени мы можем характеризовать конечной средней мощностью , поскольку их энергия бесконечна. Непериодические сигналы характеризуются конечной энергией , потому что их средняя мощность на все оси времени равна нулю.

Выражения (1)-(3) справедливы и для комплексного сигнала . В этом случае, мгновенную мощность можно определить как .

Скалярное произведение сигналов. Обобщенная формула Рэлея

Пусть даны два сигнала и , в общем случае комплексные. Скалярным произведением сигналов называется величина равная:

Интеграл (4) возвращает одно число (скаляр), в общем случае комплексное.

Заметим, что скалярное произведение сигнала с самим собой возвращает энергию данного сигнала:

Тогда скалярное произведение (4) можно трактовать как величину взаимной энергии сигналов и , т.е. степень взаимного влияния одного сигнала на другой. Если два сигнала и имеют нулевое скалярное произведение, то говорят, что они ортогональны.

Подставим в (4) вместо обратное преобразование Фурье его спектральной плотности . Тогда:

Поменяем в (6) порядок интегрирования:

Можно сделать вывод: скалярное произведение сигналов во временно́й области, с точностью до множителя , равно скалярному произведению спектральных плотностей данных сигналов. Выражение (7) носит название обобщенной формулы Рэлея .

Равенство Парсеваля

Ранее мы уже рассматривали равенство Парсеваля, связывающее среднюю мощность периодического сигнала. Для непериодических сигналов мы можем получить аналогичное равенство энергии сигнала во времени и в частотной области. Для этого в обобщенную формулу Рэлея подставим и получим:

Или с учетом (4) равенство Парсеваля :

Таким образом, энергия сигнала во временно́й и частотной областях равна с точностью до множителя .

Если в выражениях (7)-(9) использовать частоту , выраженную в герц, вместо циклической частоты , измеряемой в единицах рад/c, то и множитель сокращается:

Спектральная плотность энергии сигнала

При рассмотрении предельного перехода к преобразованию Фурье было введено понятие спектральной плотности сигнала и была приведена аналогия поясняющая понятие спектральной плотности, и ее отличие от спектра периодического сигнала.

Из равенства (9) следует, что энергия сигнала может быть представлена как интеграл по всей оси частот:

Тогда использую ту же аналогию, что и в разделе, в частности сравнивая (12) с, можно заключить, что представляет собой спектральную плотность энергии сигнала. Проинтегрировав по всей оси , мы получим полную энергию сигнала, равно как проинтегрировав плотность стержня по длине мы получим полную массу. Спектральная плотность энергии представляет собой квадрат АЧХ сигнала. Кроме того является вещественной неотрицательной функцией частоты . Спектральная плотность энергии сигнала измеряется в единицах джоуль на герц (Дж/Гц) или ватт, умноженный на секунду в квадрате (Втс).

Сделаем важное замечание. Спектральная плотность энергии игнорирует ФЧХ сигнала. Тогда можно заключить, что одной и той же спектральной плотности энергии могут соответствовать множество различных сигналов, имеющих одинаковую АЧХ и различные ФЧХ.

Спектральные плотности сигналов имеют убывающий по частоте характер , и на практике анализ поведения убывающей спектральной плотности с ростом частоты имеет важное значение. Однако графический анализ бывает затруднителен ввиду высокой скорости убывания спектральной плотности по частоте, а в случае спектральной плотности энергии затруднителен вдвойне, поскольку возведение АЧХ в квадрат только ускоряет убывание. Поэтому широкое распространение получило представление спектральной плотности энергии в логарифмическом масштабе, выраженной в единицах децибел (дБ):

В качестве примера на рисунке 1 приведены спектральные плотности энергии прямоугольного, треугольного, двустороннего экспоненциального и гауссова импульсов в линейном и логарифмическом масштабе.

Рисунок 1. Спектральная плотность энергии некоторых сигналов
а — в линейном масштабе; б — в логарифмическом масштабе

Как видно из рисунка 1а, спектральные плотности энергии импульсов в линейном масштабе практически сливаются и очень сложно различимы.

В логарифмическом масштабе (рисунок 1б), спектральные плотности энергии обнаруживают значительные отличия. Треугольный и экспоненциальный импульсы имеют одинаковую скорость убывания спектральной плотности энергии, а прямоугольный импульс имеет очень медленное затухание спектральной плотности энергии с ростом частоты. Гауссов импульс, напротив, отличается очень быстрым затуханием .

Логарифмическая шкала представления спектральной плотности энергии оказывается удобной при сравнении характеристик сигналов. Если энергии двух сигналов отличаются в 100 раз, то в логарифмической шкале отношение их энергий составляет 20 дБ. Если же энергии отличаются в 1000000 раз, то в логарифмической шкале это соответствует 60 дБ. Удвоение энергии сигнала, в логарифмической шкале соответствует прибавлению 3 дБ.

Выводы

В данном разделе мы рассмотрели энергетические характеристики периодических и непериодических сигналов. Мы показали, что периодические сигналы имеют бесконечную энергию, но конечную среднюю мощность. Средняя мощность непериодических сигналов стремится к нулю, а их энергия конечна.

Было введено понятие скалярного произведения сигналов и получена обобщенная формула Релея,связывающая скалярное произведение во временной и частотной областях.

Установлено равенство Парсеваля для непериодических сигналов, как частный случай формулы Релея.

Введено понятие спектральной плотности энергии как квадрата модуля спектральной плотности сигнала. Также рассмотрено представление спектральной плотности энергии в линейном и логарифмическом масштабе для различных сигналов.

Смотри также

Преобразования Фурье непериодических сигналов
Свойства преобразования Фурье
Спектральные плотности некоторых сигналов

Список литературы

Баскаков, С.И. Москва, ЛЕНАНД, 2016, 528 c. ISBN 978-5-9710-2464-4


Гоноровский И.С. Радиотехнические цепи и сигналы Москва, Советское радио, 1977, 608 c.

Выбор редакции
Сяоми уже давно вышла на мировой рынок гаджетов и смартфонов, и на данном этапе уже уверенно может конкурировать с именитыми брендами. В...

Давненько я не писал про космические игры, а из космических околосимуляторов сейчас главными являются Elite Dangerous и Star Citizen ,...

Практически любая программа в ходе своей работы может выдать ошибку или начать работать некорректно. Не обошла данная проблема стороной и...

Как войти в безопасный режим Windows 7? Данный вопрос чаще всего возникает, когда появляется необходимость проведения отладочных операций...
Size: 4.37 Gb, Rus, Free Chip XP 2014 Final DVD - мультизагрузочный диск c обновлениями по 20 мая 2014 года. Установка производится как в...
Отправляясь за границу, большинство пользователей хотят всегда оставаться на связи. И такая возможность у них есть с услугой Мегафон...
Есть несколько технологий передачи электричества по воздуху, в том числе с помощью лазера, звуковой волны и прочих интересных способов....
Нам очень понравилась Австрия, и даже где-то не хотелось уезжать. Но основной целью путешествия была Италия. Вся наша семья питает...
Перед подачей этой команды следует подать команду UNLOCK RPM Изменить частоту вращения шпинделя (работа этой процедуры не гарантирована)...